
Renjin Documentation
Release 3.5-beta76

BeDataDriven

Jul 20, 2021





Contents

1 Introduction 1
1.1 About Renjin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Understanding Renjin and package versions . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Using Renjin Interactively 5
2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Using Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Using Renjin as a Library 7
3.1 Project Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Using Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Evaluating R Language Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Capturing results from Renjin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Moving Data between Java and R Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Thread-Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Customizing the Execution Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Using Renjin as an R Package 29
4.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Importing Java classes into R code 31
5.1 Bean classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Writing Renjin Extensions 33
6.1 Package directory layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Renjin Maven plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Package NAMESPACE file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4 Using the hamcrest package to write unit tests . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Example extension projects 41

8 Renjin Java API specification 43
8.1 org.renjin.sexp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2 org.renjin.primitives.matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.3 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Index 49

i



ii



CHAPTER 1

Introduction

This guide covers Renjin 3.5-beta76 and is aimed at developers looking to:

1. integrate R code in their Java applications and to exchange data between Java and R code, and/or
to

2. create extension packages that can be used by Renjin much like packages are used to extend GNU
R’s functionality.

The guide also covers the parts of Renjin’s Java API that are most relevant to these goals.

1.1 About Renjin

Renjin is an interpreter for the R programming language for statistical computing written in Java much
like JRuby1 and Jython2 are for the Ruby and Python programming languages. The official R project3,
hereafter referred to as GNU R, is the reference implementation for the R language.

The goal of Renjin is to eventually be compatible with GNU R such that most existing R language pro-
grams will run in Renjin without the need to make any changes to the code. Needless to say, Renjin is
currently not 100% compatible with GNU R so your mileage may vary.

Executing R code from Java or visa versa is not new: there is the rJava4 package for GNU R that allows
R code to call Java methods and there is the RCaller5 package to call R from Java which is similar to the
JRI6 package (now shipped as part of rJava). JRI loads the R dynamic library into Java and provides a
Java API to the R functionality. RCaller works a little different by running R as a separate process that
the package communicates with. Finally, rJava uses the Java Native Interface (JNI) to enable R to call
Java applications running in the JVM.

The biggest advantage of Renjin is that the R interpreter itself is a Java module which can be seamlessly
integrated into any Java application. This dispenses with the need to load dynamic libraries or to provide
some form of communication between separate processes. These types of interfaces are often the source
of much agony7 because they place very specific demands on the environment in which they run.

1 http://www.jruby.org
2 http://www.jython.org
3 http://www.r-project.org
4 http://www.rforge.net/rJava/
5 https://code.google.com/p/rcaller/
6 http://www.rforge.net/JRI
7 http://stackoverflow.com/tags/rjava/hot

1

http://www.jruby.org
http://www.jython.org
http://www.r-project.org
http://www.rforge.net/rJava/
https://code.google.com/p/rcaller/
http://www.rforge.net/JRI
http://stackoverflow.com/tags/rjava/hot
http://stackoverflow.com/tags/rjava/hot


Renjin Documentation, Release 3.5-beta76

Renjin also benefits from the Java ecosystem which, amongst many things, includes professional tools
for component (or application) life-cycle management. Think of Apache Maven8 as a software project
management tool for building components (i.e. artifacts in Maven parlance) and managing dependencies
as well as the likes of Artifactory9 and Nexus10 for repository management.

Another advantage of Renjin is that no extra sauce is required to enable the R/Java interface. Packages
like rJava and RCaller require that you litter your code with special commands that are part of their API.
As the chapter Importing Java classes into R code (page 31) shows, Renjin provides direct access to Java
methods using an interface that is completely unobtrusive.

See http://www.renjin.org for more information on Renjin.

1.2 Understanding Renjin and package versions

We version two things: Renjin itself and the individual extension packages which we build for Renjin.

1.2.1 Versions and builds of Renjin

The Renjin version number consists of two pieces of information: the major version number and the
build number:

Fig. 1: Renjin version numbering

Every time we commit a change to Renjin’s source on GitHub11, a build job is automatically triggered on
our build server which assigns the build number to the Renjin version number. If the build succeeds, the
artifacts are deployed to our public repository.

The build number in Renjin’s version number always increases and is independent of the major version
(i.e. it isn’t reset to 1 when we increase the major version).

1.2.2 Package versions and builds

R extension packages from CRAN and Bioconductor have their own version numbers which we also use
in Renjin. Depending on what changes were committed to Renjin’s source, we will manually trigger a
build of packages, either all 10000+ of them or a random selection, to assess the effect of the changes
on the test results.

Following the explanation in this blog post12, to fully reference packages in Renjin one would use the
following format:

The labels at the top correspond to the fields in a Maven project (POM) file whereas the bottom labels
explain how package references are constructed. The package detail page in Renjin’s package repository
browser tells you how to load extension packages from the command line or using a POM file (see the
section Using Packages (page 10)).

8 http://maven.apache.org
9 http://www.jfrog.com

10 http://www.sonatype.org/nexus/
11 https://github.com/bedatadriven/renjin
12 http://www.renjin.org/blog/2015-09-14-new-packages-renjin-org.html

2 Chapter 1. Introduction

http://maven.apache.org
http://www.jfrog.com
http://www.sonatype.org/nexus/
http://www.renjin.org
https://github.com/bedatadriven/renjin
http://www.renjin.org/blog/2015-09-14-new-packages-renjin-org.html


Renjin Documentation, Release 3.5-beta76

Fig. 2: Version numbering of Renjin-compatible extension packages

1.2. Understanding Renjin and package versions 3



Renjin Documentation, Release 3.5-beta76

4 Chapter 1. Introduction



CHAPTER 2

Using Renjin Interactively

Though Renjin’s principle goal is to make it easier to embed R code in existing systems, it can also be
used as an interactive Read-Eval-Print-Loop (REPL) similar to that of GNU R.

Fig. 1: Interactive interpreter run from the command line

2.1 Prerequisites

Renjin requires a Java Runtime Environment, version 8 or later. We recommend that you install the latest
version of the Oracle’s JDK.

2.2 Installation

Visit the downloads page13 on renjin.org.

13 http://www.renjin.org/downloads.html

5

http://www.renjin.org/downloads.html


Renjin Documentation, Release 3.5-beta76

2.3 Using Packages

There are some differences between the way Renjin manages packages compared to the way that GNU
R manages packages.

In GNU R, you must first run install.packages(), which will download and build a package from source.
After the package is installed, then it can be loaded with a call to library().

From within Renjin’s REPL, there is no install.packages() function: the first time you try to load a
package with library(), Renjin will check the repository for a package with the matching name and
download it to a local repository located in ~/.m2/repository.

As a service, BeDataDriven provides a repository with all CRAN (the Comprehensive R Archive Net-
work14) and BioConductor packages at http://packages.renjin.org. The packages in this repository are
built and packaged for use with Renjin. Not all packages can be built for Renjin so please consult the
repository to see if your favorite package is available for Renjin.

14 https://cran.r-project.org

6 Chapter 2. Using Renjin Interactively

https://cran.r-project.org
https://cran.r-project.org
http://packages.renjin.org


CHAPTER 3

Using Renjin as a Library

3.1 Project Setup

Renjin is a essentially a Java library that allows you to evaluate scripts written in the R language. This
library must be added as dependency to your project.

• Maven (page 7)

• Gradle (page 8)

• Scala Build Tool (SBT) (page 8)

• Eclipse (page 8)

• JBoss (page 9)

• Spark (page 9)

3.1.1 Maven

For projects organized with Apache Maven, you can simply add Renjin’s Script Engine as dependency to
your project:

<dependencies>
<dependency>
<groupId>org.renjin</groupId>
<artifactId>renjin-script-engine</artifactId>
<version>3.5-beta76</version>

</dependency>
</dependencies>

where For this to work you will also need to add BeDataDriven’s public repository to your pom.xml:

<repositories>
<repository>

<id>bedatadriven</id>
<name>bedatadriven public repo</name>

(continues on next page)

7



Renjin Documentation, Release 3.5-beta76

(continued from previous page)

<url>https://nexus.bedatadriven.com/content/groups/public/</url>
</repository>

</repositories>

You can use RELEASE instead of “3.5-beta76” in the project file to use the very latest versions of the Renjin
components.

3.1.2 Gradle

For projects organized with Gradle, add the following to your build.gradle file:

repositories {
maven { url "https://nexus.bedatadriven.com/content/groups/public" }

}

dependencies {
compile "org.renjin:renjin-script-engine:3.5-beta76";

}

See the renjin-gradle-example15 on GitHub for a complete example.

3.1.3 Scala Build Tool (SBT)

The following is an example of build.sbt that includes Renjin’s Script Engine:

// IMPORTANT: sbt may fail if http*s* is not used.
resolvers +=

"BeDataDriven" at "https://nexus.bedatadriven.com/content/groups/public"

// Workaround for buggy http handler in SBT 1.x
// https://github.com/sbt/sbt/issues/3570
// Do not include for SBT 0.13.x or earlier
updateOptions := updateOptions.value.withGigahorse(false)

lazy val root = (project in file(".")).
settings(
name := "renjin-test",
version := "1.0",
scalaVersion := "2.10.6",
libraryDependencies += "org.renjin" % "renjin-script-engine" % "3.5-beta76"

)

See the renjin-sbt-example16 on GitHub for a complete example.

Note: There has been a report17 that the coursier18 plugin fails to resolve Renjin’s dependencies. If you
encounter class path problems with the plugin, try building your project without.

3.1.4 Eclipse

We recommend using a build tool to organize your project. As soon as you begin using non-trivial R
packages, it will become increasingly difficult to manage dependencies (and the dependencies of those

15 https://github.com/bedatadriven/renjin-gradle-example
16 https://github.com/bedatadriven/renjin-sbt-example
17 http://stackoverflow.com/questions/40888063/load-rdata-from-an-r-script-in-scala-using-renjin#answer-40999169
18 https://github.com/alexarchambault/coursier

8 Chapter 3. Using Renjin as a Library

https://nexus.bedatadriven.com/content/groups/public
https://github.com/bedatadriven/renjin-gradle-example
https://nexus.bedatadriven.com/content/groups/public
https://github.com/sbt/sbt/issues/3570
https://github.com/bedatadriven/renjin-sbt-example
http://stackoverflow.com/questions/40888063/load-rdata-from-an-r-script-in-scala-using-renjin#answer-40999169
https://github.com/alexarchambault/coursier


Renjin Documentation, Release 3.5-beta76

dependencies) through a point-and-click interface.

If this isn’t possible for whatever reason, you can download a single JAR file called:

renjin-script-engine-3.5-beta76-jar-with-dependencies.jar

from the Renjin website and manually add this as a dependency in Eclipse.

See the eclipse-dynamic-web-project19 example project for more details.

3.1.5 JBoss

There have been reports of difficulty loading Renjin within JBoss without a specific module.xml file:

<module xmlns="urn:jboss:module:1.1" name="org.renjin">
<resources>
<resource-root path="renjin-script-engine-3.5-beta76-jar-with-dependencies.jar"/>

</resources>
<dependencies>
<module name="javax.api"/>

</dependencies>
</module>

3.1.6 Spark

The spark-submit command line tool requires you to explicitly specify the dependencies of your Spark
Job. In order to avoid specifying all of Renjin’s dependencies, as well as those of CRAN, and BioConductor
packages, or your own internal packages, you can still use Maven (or Gradle or SBT) to automatically
resolve your dependencies and build a single JAR that you can pass as an argument to spark-submit or
dse spark-submit.

<dependencies>
<dependency>
<groupId>com.datastax.dse</groupId>
<artifactId>dse-spark-dependencies</artifactId>
<version>5.0.1</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupId>org.renjin</groupId>
<artifactId>renjin-script-engine</artifactId>
<version>3.5-beta76</version>

</dependency>

<dependency>
<groupId>org.renjin.cran</groupId>
<artifactId>randomForest</artifactId>
<version>4.6-12-b34</version>

</dependency>
</dependencies>

<build>
<!--- Assembly plugin to build single jar -->

</build>

<repositories>
<!-- Renjin and Spark/DataStax repositories -->

19 https://github.com/bedatadriven/renjin-examples/tree/master/eclipse-dynamic-web-project

3.1. Project Setup 9

https://github.com/bedatadriven/renjin-examples/tree/master/eclipse-dynamic-web-project
urn:jboss:module:1.1


Renjin Documentation, Release 3.5-beta76

</repositories>

See the renjin-spark-executor20 project or the datastax/SparkBuildExamples21 repository from DataStax
for complete examples.

You can then submit your job as follows:

mvn clean package
spark-submit --class org.renjin.ExampleJob target/renjin-example-0.1-dep.jar

3.2 Using Packages

When using the Renjin Script Engine, R packages are treated almost exactly like any other Java or Scala
dependency, and must be placed on your application’s classpath by Maven or a similar build tool.

As a service, BeDataDriven provides a repository with all CRAN (the Comprehensive R Archive Net-
work22) and Bioconductor23 packages at http://packages.renjin.org. The packages in this repository are
built and packaged for use with Renjin. Not all packages can (yet) be built for Renjin so please consult
the repository to see if your favorite package is available for Renjin.

If you use Maven you can include a package to your project by adding it as a dependency. For example,
to include the exptest package you add the following to your project’s pom.xml file (don’t forget to add
BeDataDriven’s public repository as described in the section Project Setup (page 7)):

<dependency>
<groupId>org.renjin.cran</groupId>
<artifactId>exptest</artifactId>
<version>1.2-b214</version>

</dependency>

You will find this information on the package detail page as well. For this example this page is at
http://packages.renjin.org/packages/exptest.html. Inside your R code you can now simply attach this
package to the search path using the library(exptest) statement.

3.3 Evaluating R Language Code

The best way to call R from Java is to use the javax.scripting24 interfaces. These interfaces are mature
and guaranteed to be stable regardless of how Renjin’s internals evolve.

You can create a new instance of a Renjin ScriptEngine using the RenjinScriptEngineFactory class and
then instantiate Renjin’s ScriptEngine using the factory’s getEngine() method.

The following code provides a template for a simple Java application that can be used for all the examples
in this guide.

import javax.script.*;
import org.renjin.script.*;

// ... add additional imports here ...

public class TryRenjin {
public static void main(String[] args) throws Exception {

// create a script engine manager:

(continues on next page)

20 https://github.com/onetapbeyond/renjin-spark-executor/tree/master/examples/java/hello-world
21 https://github.com/datastax/SparkBuildExamples
22 http://cran.r-project.org
23 http://bioconductor.org
24 http://docs.oracle.com/javase/6/docs/technotes/guides/scripting/programmer_guide/

10 Chapter 3. Using Renjin as a Library

https://github.com/onetapbeyond/renjin-spark-executor/tree/master/examples/java/hello-world
https://github.com/datastax/SparkBuildExamples
http://cran.r-project.org
http://cran.r-project.org
http://bioconductor.org
http://packages.renjin.org
http://packages.renjin.org/packages/exptest.html
http://docs.oracle.com/javase/6/docs/technotes/guides/scripting/programmer_guide/


Renjin Documentation, Release 3.5-beta76

(continued from previous page)

RenjinScriptEngineFactory factory = new RenjinScriptEngineFactory();
// create a Renjin engine:
ScriptEngine engine = factory.getScriptEngine();

// ... put your Java code here ...
}

}

Note: We recommend using RenjinScriptEngineFactory directly, as the standard javax.script silently
returns null and hides any exceptions encountered when loading Renjin, making it very difficult to debug
any project setup problems.

If you’re using Renjin in a more generic context, you can load the engine by name by calling
ScriptEngineManager.getEngineByName("Renjin").

With the ScriptEngine instance in hand, you can now evaluate R language source code, either from a
String, or from a Reader interface. The following snippet, for example, constructs a data frame, prints it
out, and then does a linear regression on the two values.

engine.eval("df <- data.frame(x=1:10, y=(1:10)+rnorm(n=10))");
engine.eval("print(df)");
engine.eval("print(lm(y ~ x, df))");

You should get output similar to the following:

x y
1 1 -0.188
2 2 3.144
3 3 1.625
4 4 3.426
5 5 6.45
6 6 5.85
7 7 7.774
8 8 8.495
9 9 9.276
10 10 10.603

Call:
lm(formula = y ~ x, data = df)

Coefficients:
(Intercept) x
-0.582 1.132

Note: The ScriptEngine won’t print everything to standard out like the interactive REPL does, so if you
want to output something, you’ll need to call the R print() command explicitly.

You can also collect the R commands in a separate file

# script.R
df <- data.frame(x=1:10, y=(1:10)+rnorm(n=10))
print(df)
print(lm(y ~ x, df))

and evaluate the script using the following snippet:

engine.eval(new java.io.FileReader("script.R"));

3.3. Evaluating R Language Code 11



Renjin Documentation, Release 3.5-beta76

3.4 Capturing results from Renjin

There are two main options for capturing results from R code evaluated by the Renjin ScriptEngine. You
can either capture the printed output of a function, or access individual values.

Let’s take the example of fitting an SVM model with the e1071 package25.

import javax.script.*;
import org.renjin.script.*;

public class SVM {
public static void main(String[] args) throws Exception {

// create a script engine manager:
RenjinScriptEngineFactory factory = new RenjinScriptEngineFactory();
// create a Renjin engine:
ScriptEngine engine = factory.getScriptEngine();
engine.eval("library(e1071)");
engine.eval("data(iris)");
engine.eval("svmfit <- svm(Species~., data=iris)");

}
}

Right now, the fitted model is stored in the variable svmfit inside the R session, but is not yet accessible
to the Java program.

3.4.1 Capturing output text

The simplest thing we can do is to ask the svm package to print a summary of the model to the standard
output stream:

engine.eval("print(svmfit)");

However, by default, Renjin’s standard output stream will just print to your console, yielding:

Call:
svm(data = iris, formula = Species ~ .)

Parameters:
SVM-Type: C-classification
SVM-Kernel: radial

cost: 1
gamma: 0.25

Number of Support Vectors: 45

This is helpful, but the text is not yet accessible to our Java program. To store this text to a Java string,
we can redirect Renjin’s output to a StringWriter.

StringWriter outputWriter = new StringWriter();
engine.getContext().setWriter(outputWriter);
engine.eval("print(svmfit)");

String output = outputWriter.toString();

// Reset output to console
engine.getContext().setWriter(new PrintWriter(System.out));

Now the output of the print() function call is stored in the Java output variable.

25 http://packages.renjin.org/package/org.renjin.cran/e1071

12 Chapter 3. Using Renjin as a Library

http://packages.renjin.org/package/org.renjin.cran/e1071


Renjin Documentation, Release 3.5-beta76

3.4.2 Extracting individual values

You will most likely want to access individual values rather than simply output text.

The svmfit variable in the R session, however, holds a complicated R object, however, built with lists of
lists.

You can look at the structure of this object using the str() function:

> str(svmfit)
List of 30
$ call :length 3 svm(data = iris, formula = Species ~ .)
$ type : num 0
$ kernel : num 2
$ cost : num 1
$ degree : num 3
$ gamma : num 0.25
$ coef0 : num 0
$ nu : num 0.5
$ epsilon : num 0.1
$ sparse : logi FALSE
$ scaled : logi [1:4] FALSE FALSE FALSE FALSE
$ x.scale : NULL
$ y.scale : NULL
$ nclasses : int 3
$ levels : chr [1:3] "setosa" "versicolor" "virginica"
$ tot.nSV : int 45
$ nSV : int [1:3] 7 19 19
$ labels : int [1:3] 1 2 3

... etc ...

Now we can see that svmfit object is an R list with 30 named properties, including “cost”, “type”,
“gamma”, etc.

We can ask the Renjin ScriptEngine for these values and then use the results in our Java program. For
example:

Vector gammaVector = (Vector)engine.eval("svmfit$gamma");
double gamma = gammaVector.getElementAsDouble(0);

Vector nclassesVector = (Vector)engine.eval("svmfit$nclasses");
int nclasses = nclasses = nclassesVector.getElementAsInt(0);

StringVector levelsVector = (StringVector)engine.eval("svmfit$levels");
String[] levelsArray = levelsVector.toArray();

The engine.eval() method will always return an object of type SEXP, which is the Java type Renjin uses
to represent R’s “S-Expressions”. You can read more about these types and how to access their values in
the javadoc26.

In a more general sense, you can get a list of variables defined in the global environment by using the
ls() function:

StringVector variables = (StringVector)engine.eval("ls()");

You can also access the global Environment27 object through Renjin’s API:

RenjinScriptEngine renjinScriptEngine = (RenjinScriptEngine)engine;
Session session = renjinScriptEngine.getSession();
Environment global = session.getGlobalEnvironment();

26 http://javadoc.renjin.org/latest/index.html?org/renjin/sexp/package-summary.html
27 http://javadoc.renjin.org/latest/org/renjin/sexp/Environment.html

3.4. Capturing results from Renjin 13

http://javadoc.renjin.org/latest/index.html?org/renjin/sexp/package-summary.html
http://javadoc.renjin.org/latest/org/renjin/sexp/Environment.html


Renjin Documentation, Release 3.5-beta76

3.5 Moving Data between Java and R Code

If you read the Evaluating R Language Code (page 10) to this guide you already know how to execute R
code from a Java application. In this chapter we will take things a little further and explain how you can
move data between Java and R code.

Renjin provides a mapping from R language types to Java objects. To use this mapping effectively you
should have at least a basic understanding of R’s object types. The next section provides a short intro-
duction which is essentially a condensed version of the relevant material in the R Language Definition
manual28. If you are already familiar with R’s object types you can skip this section and head straight to
the section Pulling data from R into Java (page 17) or Pushing data from Java to R (page 22).

3.5.1 A Java Developer’s Guide to R Objects

R has a number of objects types that are referred to as basic types. Of these, we only discuss those that
are most frequently encountered by users of R: vectors, lists, functions, and the NULL object. We also
discuss the two common compound objects in R, namely data frames and factors.

Attributes

Before we discuss these objects, it is important to know that all objects except the NULL object can have
one or more attributes. Common attributes are the names attribute which contains the element names,
the class attribute which stores the name of the class of the object, and the dim attribute and (optionally)
its dimnames companion to store the size of each dimension (and the name of each dimension) of the
object. For each object, the attributes() command will return a list with the attributes and their
values. The value of a specific attribute can be obtained using the attr() function. For example, attr(x,
"class") will return the name of the class of the object (or NULL if the attribute is not defined).

Vectors

There are six basic vector types which are referred to as the atomic vector types. These are:

logical: a boolean value (for example: TRUE)

integer: an integer value (for example: 1)

double: a real number (for example: 1.5)

character: a character string (for example: "foobar")

complex: a complex number (for example: 1+2i)

raw: uninterpreted bytes (forget about this one)

These vectors have a length and can be indexed using [ as the following sample R session demonstrates:

> x <- 2
> length(x)
[1] 1
> y <- c(2, 3)
> y[2]
[1] 3

As you can see, even single numbers are vectors with length equal to one. Vectors in R can have missing
values that are represented as NA. Because all elements in a vector must be of the same type (i.e. log-
ical, double, int, etc.) there are multiple types of NA. However, the casual R user will generally not be
concerned with the different types for NA.

28 http://cran.r-project.org/doc/manuals/r-release/R-lang.html

14 Chapter 3. Using Renjin as a Library

http://cran.r-project.org/doc/manuals/r-release/R-lang.html
http://cran.r-project.org/doc/manuals/r-release/R-lang.html


Renjin Documentation, Release 3.5-beta76

> x <- c(1, NA, 3)
> x
[1] 1 NA 3
> y <- as.character(NA)
> y
[1] NA
> typeof(NA) # default type of NA is logical
[1] "logical"
> typeof(y) # but we have coerced 'y' to a character vector
[1] "character"

R’s typeof() function returns the internal type of each object. In the example above, y is a character
vector.

Factors

Factors are one of R’s compound data types. Internally, they are represented by integer vectors with a
levels attribute. The following sample R session creates such a factor from a character vector:

> x <- sample(c("A", "B", "C"), size = 10, replace = TRUE)
> x
[1] "C" "B" "B" "C" "A" "A" "B" "B" "C" "B"
> as.factor(x)
[1] C B B C A A B B C B
Levels: A B C

Internally, the factor in this example is stored as an integer vector c(3, 2, 2, 3, 1, 1, 2, 2, 3, 2)
which are the indices of the letters in the character vector c(A, B, C) stored in the levels attribute.

Lists

Lists are R’s go-to structures for representing data structures. They can contain multiple elements, each
of which can be of a different type. Record-like structures can be created by naming each element in
the list. The lm() function, for example, returns a list that contains many details about the fitted linear
model. The following R session shows the difference between a list and a list with named elements:

> l <- list("Jane", 23, c(6, 7, 9, 8))
> l
[[1]]
[1] "Jane"

[[2]]
[1] 23

[[3]]
[1] 6 7 9 8

> l <- list(name = "Jane", age = 23, scores = c(6, 7, 9, 8))
> l
$name
[1] "Jane"

$age
[1] 23

$scores
[1] 6 7 9 8

In R, lists are also known as generic vectors. They have a length that is equal to the number of elements
in the list.

3.5. Moving Data between Java and R Code 15



Renjin Documentation, Release 3.5-beta76

Data frames

Data frames are one of R’s compound data types. They are lists of vectors, factors and/or matrices,
all having the same length. It is one of the most important concepts in statistics and has equivalent
implementations in SAS29 and SPSS30.

The following sample R session shows how a data frame is constructed, what its attributes are and that
it is indeed a list:

> df <- data.frame(x = seq(5), y = runif(5))
> df

x y
1 1 0.8773874
2 2 0.4977048
3 3 0.6719721
4 4 0.2135386
5 5 0.3834681
> class(df)
[1] "data.frame"
> attributes(df)
$names
[1] "x" "y"

$row.names
[1] 1 2 3 4 5

$class
[1] "data.frame"

> is.list(df)
[1] TRUE

Matrices and arrays

Besides one-dimensional vectors, R also knows two other classes to represent array-like data types:
matrix and array. A matrix is simply an atomic vector with a dim attribute that contains a numeric
vector of length two:

> x <- seq(9)
> class(x)
[1] "integer"
> dim(x) <- c(3, 3)
> class(x)
[1] "matrix"
> x

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

Likewise, an array is also a vector with a dim attribute that contains a numeric vector of length greater
than two:

> y <- seq(8)
> dim(y) <- c(2,2,2)
> class(y)
[1] "array"

29 http://www.sas.com
30 http://www.ibm.com/software/analytics/spss/

16 Chapter 3. Using Renjin as a Library

http://www.sas.com
http://www.ibm.com/software/analytics/spss/


Renjin Documentation, Release 3.5-beta76

The example with the matrix shows that the elements in an array are stored in column-major order31

which is important to know when we want to access R arrays from a Java application.

Note: In both examples for the matrix and array objects, the class() function derives the class from
the fact that the object is an atomic vector with the dim attribute set. Unlike data frames, these objects
do not have a class attribute.

3.5.2 Overview of Renjin’s type system

Renjin has corresponding classes for all of the R object types discussed in the section A Java Developer’s
Guide to R Objects (page 14). Table Renjin’s Java classes for common R object types (page 17) summarizes
these object types and their Java classes. In R, the object type is returned by the typeof() function.

Table 1: Renjin’s Java classes for common R object types
R object type Renjin class
logical LogicalVector
integer IntVector
double DoubleVector
character StringVector
complex ComplexVector
raw RawVector
list ListVector
function Function
environment Environment
NULL Null

There is a certain hierarchy in Renjin’s Java classes for the different object types in R. Figure Hierarchy
in Renjin’s type system (page 18) gives a full picture of all classes that make up Renjin’s type system.
These classes are contained in the org.renjin.sexp Java package. The vector classes listed in table Renjin’s
Java classes for common R object types (page 17) are in fact abstract classes that can have different
implementations. For example, the DoubleArrayVector (not shown in the figure) is an implementation
of the DoubleVector abstract class. The SEXP (page 45), Vector (page 46), and AtomicVector classes are
all Java interfaces.

Note: Renjin does not have classes for all classes of objects that are know to (base) R. This includes
objects of class matrix and array which are represented by one of the AtomicVector classes and R’s com-
pound objects factor and data.frame which are represented by an IntVector and ListVector (page 44)
respectively.

3.5.3 Pulling data from R into Java

Now that you have a good understanding of both R’s object types and how these types are mapped
to Renjin’s Java classes, we can start by pulling data from R code into our Java application. A typical
scenario is one where an R script performs a calculation and the result is pulled into the Java application
for further processing.

Using the Renjin Script Engine as introduced in the Evaluating R Language Code (page 10), we can store
the result of a calculation from R into a Java object. By default, the eval() method of javax.script.
ScriptEngine32 returns an Object33, i.e. Java’s object superclass. We can always cast this result to a SEXP

31 http://en.wikipedia.org/wiki/Row-major_order#Column-major_order
32 http://docs.oracle.com/javase/8/docs/api/javax/script/ScriptEngine.html
33 https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

3.5. Moving Data between Java and R Code 17

http://en.wikipedia.org/wiki/Row-major_order#Column-major_order
http://docs.oracle.com/javase/8/docs/api/javax/script/ScriptEngine.html
http://docs.oracle.com/javase/8/docs/api/javax/script/ScriptEngine.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html


Renjin Documentation, Release 3.5-beta76

Fig. 1: Hierarchy in Renjin’s type system

(page 45) object. The following Java snippet shows how this is done and how the Object.getClass()34

and Class.getName()35 methods can be used to determine the actual class of the R result:

// evaluate Renjin code from String:
SEXP res = (SEXP)engine.eval("a <- 2; b <- 3; a*b");

// print the result to stdout:
System.out.println("The result of a*b is: " + res);
// determine the Java class of the result:
Class objectType = res.getClass();
System.out.println("Java class of 'res' is: " + objectType.getName());
// use the getTypeName() method of the SEXP object to get R's type name:
System.out.println("In R, typeof(res) would give '" + res.getTypeName() + "'");

This should write the following to the standard output:

The result of a*b is: 6.0
Java class of 'res' is: org.renjin.sexp.DoubleArrayVector
In R, typeof(res) would give 'double'

As you can see the getTypeName (page 45) method of the SEXP (page 45) class will return a String object
with R’s name for the object type.

Note: Don’t forget to import org.renjin.sexp.* to make Renjin’s type classes available to your appli-
cation.

In the example above we could have also cast R’s result to a DoubleVector object:

34 https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#getClass()
35 https://docs.oracle.com/javase/7/docs/api/java/lang/Class.html#getName()

18 Chapter 3. Using Renjin as a Library

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#getClass()
https://docs.oracle.com/javase/7/docs/api/java/lang/Class.html#getName()


Renjin Documentation, Release 3.5-beta76

DoubleVector res = (DoubleVector)engine.eval("a <- 2; b <- 3; a*b");

or you could cast it to a Vector:

Vector res = (Vector)engine.eval("a <- 2; b <- 3; a*b");

You can’t cast R integer results to a DoubleVector: the following snippet will throw a
ClassCastException36:

// use R's 'L' suffix to define an integer:
DoubleVector res = (DoubleVector)engine.eval("1L");

As mentioned in “Capturing results from Renjin” if you have more complex scripts, you can fetch indi-
vidual values by their name. e.g.

engine.eval("someVar <- 123 \n otherVar <- 'hello'");

Environment global = engine.getSession().getGlobalEnvironment();
Context topContext = engine.getSession().getTopLevelContext();

DoubleArrayVector numVec = (DoubleArrayVector)global.getVariable(topContext, "someVar");
StringVector strVec = (StringVector)global.getVariable(topContext, "otherVar");
int someVar = numVec.getElementAsInt(0);
String otherVar = strVec.asString();
// do stuff with the variables created in your script

Accessing individual elements of vectors

Now that we know how to pull R objects into our Java application we want to work with these data types
in Java. In this section we show how individual elements of the Vector objects can be accessed in Java.

As you know, each vector type in R, and thus also in Renjin, has a length which can be obtained with the
length() method. Individual elements of a vector can be obtained with the getElementAsXXX() methods
where XXX is one of Double, Int, String, Logical, and Complex. The following snippet demonstrates this:

Vector x = (Vector)engine.eval("x <- c(6, 7, 8, 9)");
System.out.println("The vector 'x' has length " + x.length());
for (int i = 0; i < x.length(); i++) {

System.out.println("Element x[" + (i + 1) + "] is " + x.getElementAsDouble(i));
}

This will write the following to the standard output:

The vector 'x' has length 4
Element x[1] is 6.0
Element x[2] is 7.0
Element x[3] is 8.0
Element x[4] is 9.0

As we have seen in the Lists (page 15) section above, lists in R are also known as generic vectors, but
accessing the individual elements and their elements requires a bit more care. If an element (i.e. a vector)
of a list has length equal to one, we can access this element directly using one of the getElementAsXXX()
methods. For example:

ListVector x =
(ListVector)engine.eval("x <- list(name = \"Jane\", age = 23, scores = c(6, 7, 8, 9))");

System.out.println("List 'x' has length " + x.length());
// directly access the first (and only) element of the vector 'x$name':
System.out.println("x$name is '" + x.getElementAsString(0) + "'");

36 https://docs.oracle.com/javase/7/docs/api/java/lang/ClassCastException.html

3.5. Moving Data between Java and R Code 19

https://docs.oracle.com/javase/7/docs/api/java/lang/ClassCastException.html


Renjin Documentation, Release 3.5-beta76

which will result in:

List 'x' has length 3
x$name is 'Jane'

being printed to standard output. However, this approach will not work for the third element of the list
as this is a vector with length greater than one. The preferred approach for lists is to get each element
as a SEXP (page 45) object first and then to handle each of these accordingly. For example:

DoubleVector scores = (DoubleVector)x.getElementAsSEXP(2);

Dealing with matrices

As described in the section Matrices and arrays (page 16) above, matrices are simply vectors with the
dim attribute set to an integer vector of length two. In order to identify a matrix in Renjin, we need to
therefore check for the presence of this attribute and its value. Since any object in R can have one or
more attributes, the SEXP (page 45) interface defines a number of methods for dealing with attributes.
In particular, hasAttributes (page 45) will return true if there are any attributes defined in an object
and getAttributes (page 45) will return these attributes as a AttributeMap (page 43).

Vector res = (Vector)engine.eval("matrix(seq(9), nrow = 3)");
if (res.hasAttributes()) {

AttributeMap attributes = res.getAttributes();
Vector dim = attributes.getDim();
if (dim == null) {

System.out.println("Result is a vector of length " +
res.length());

} else {
if (dim.length() == 2) {

System.out.println("Result is a " +
dim.getElementAsInt(0) + "x" +
dim.getElementAsInt(1) + " matrix.");

} else {
System.out.println("Result is an array with " +

dim.length() + " dimensions.");
}

}
}

Output:

Result is a 3x3 matrix.

For convenience, Renjin includes a wrapper class Matrix that provides easier access to the number of
rows and columns.

Example:

// required import(s):
import org.renjin.primitives.matrix.*;

Vector res = (Vector)engine.eval("matrix(seq(9), nrow = 3)");
try {

Matrix m = new Matrix(res);
System.out.println("Result is a " + m.getNumRows() + "x"

+ m.getNumCols() + " matrix.");
} catch(IllegalArgumentException e) {

System.out.println("Result is not a matrix: " + e);
}

20 Chapter 3. Using Renjin as a Library



Renjin Documentation, Release 3.5-beta76

Output:

Result is a 3x3 matrix.

Dealing with lists and data frames

The ListVector (page 44) class contains several convenience methods to access a list’s components from
Java. For example, we can the extract the components from a fitted linear model using the name of the
element that contains those components. For example:

ListVector model = (ListVector)engine.eval("x <- 1:10; y <- x*3; lm(y ~ x)");
Vector coefficients = model.getElementAsVector("coefficients");
// same result, but less convenient:
// int i = model.indexOfName("coefficients");
// Vector coefficients = (Vector)model.getElementAsSEXP(i);

System.out.println("intercept = " + coefficients.getElementAsDouble(0));
System.out.println("slope = " + coefficients.getElementAsDouble(1));

Output:

intercept = -4.4938668397781774E-15
slope = 3.0

3.5.4 Handling errors generated by the R code

Up to now we have been able to execute R code without any concern for possible errors that may occur
when the R code is evaluated. There are two common exceptions that may be thrown by the R code:

1. ParseException (page 47): an exception thrown by Renjin’s R parser due to a syntax error and

2. EvalException (page 47): an exception thrown by Renjin when the R code generates an error
condition, for example by the stop() function.

Here is an example which catches an exception from Renjin’s parser:

// required import(s):
import org.renjin.parser.ParseException;

try {
engine.eval("x <- 1 +/ 1");

} catch (ParseException e) {
System.out.println("R script parse error: " + e.getMessage());

}

Output:

R script parse error: Syntax error at line 1 char 0: syntax error, unexpected '/'

And here’s an example which catches an error condition thrown by the R interpreter:

// required import(s):
import org.renjin.eval.EvalException;

try {
engine.eval("stop(\"Hello world!\")");

} catch (EvalException e) {
// getCondition() returns the condition as an R list:
Vector condition = (Vector)e.getCondition();
// the first element of the string contains the actual error message:

(continues on next page)

3.5. Moving Data between Java and R Code 21



Renjin Documentation, Release 3.5-beta76

(continued from previous page)

String msg = condition.getElementAsString(0);
System.out.println("The R script threw an error: " + msg);

}

Output:

The R script threw an error: Hello world!

EvalException.getCondition() (page 47) is required to pull the condition message from the R inter-
preter into Java.

3.5.5 Pushing data from Java to R

Like many dynamic languages, R scripts are evaluated in the context of an environment that looks a lot
like a dictionary. You can define new variables in this environment using the javax.script37 API. This is
achieved using the ScriptEngine.put()38 method.

Example:

engine.put("x", 4);
engine.put("y", new double[] { 1d, 2d, 3d, 4d });
engine.put("z", new DoubleArrayVector(1,2,3,4,5));
engine.put("hashMap", new java.util.HashMap());
// some R magic to print all objects and their class with a for-loop:
engine.eval("for (obj in ls()) { " +

"cmd <- parse(text = paste('typeof(', obj, ')', sep = ''));" +
"cat('type of ', obj, ' is ', eval(cmd), '\\n', sep = '') }");

Output:

type of hashMap is externalptr
type of x is integer
type of y is double
type of z is double

Renjin will implicitly convert primitives, arrays of primitives and String39 instances to R objects.
Java objects will be wrapped as R externalptr objects. The example also shows the use of the
DoubleArrayVector constructor to create a double vector in R. You see that we managed to put a Java
java.util.HashMap40 object into the global environment of the R session: this is the topic of the chapter
Importing Java classes into R code (page 31).

3.6 Thread-Safety

R code must always be evaluated in the context of a Session, which carries certain state, such as the
Global Environment the list of loaded packages, global options, and the state of the random number
generator.

Sessions are not thread-safe in the sense that two different R expressions cannot be evaluated concur-
rently within the same Session.

When using GNU R, a new R Session begins when the interpreter is started in a process, either from the
command line, or via REngine. Because of the way that GNU R is implemented, every R Session must
have its own process, and so you can not evaluate two R expressions concurrently in the same process.

37 http://docs.oracle.com/javase/8/docs/api/javax/script/package-summary.html
38 http://docs.oracle.com/javase/8/docs/api/javax/script/ScriptEngine.html#put-java.lang.String,java.lang.Object-
39 https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
40 https://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html

22 Chapter 3. Using Renjin as a Library

http://docs.oracle.com/javase/8/docs/api/javax/script/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/script/ScriptEngine.html#put-java.lang.String, java.lang.Object-
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html


Renjin Documentation, Release 3.5-beta76

Renjin is implemented differently, with the goal of being able to run multiple Sessions within the same
process or the same JVM.

Every new instance of RenjinScriptEngine has its own independent Session. A single Session cannot
execute multiple R scripts concurrently, but you can execute multiple R scripts concurrently within the
same JVM, as long as each concurrent script has its own ScriptEngine.

If you want to execute several R scripts in parallel, you have a few options.

3.6.1 Thread-Local ScriptEngine

You can use the standard java.lang.ThreadLocal41 class to maintain exactly one ScriptEngine per
thread. This approach is useful when a small number of long-running worker threads each need to
execute independent R scripts. This is the case for most Java Servlet containers, for example.

The following is a simple example based on the appengine-servlet42 example:

public class MyServlet extends HttpServlet {

/**
* Maintain one instance of Renjin for each request thread.
*/
private static final ThreadLocal<ScriptEngine> ENGINE = new ThreadLocal<ScriptEngine>();

@Override
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException,␣

→˓IOException {

ScriptEngine engine = ENGINE.get();
if(engine == null) {

// create a new engine for this thread
RenjinScriptEngineFactory factory = new RenjinScriptEngineFactory();
engine = factory.getScriptEngine();
ENGINE.set(engine);

}
// evaluate a script using the engine reference

}

3.6.2 ScriptEngine Pooling

If your application, in constrast, uses a larger number of threads, or short-lived threads, it may make
more sense to use a pool of ScriptEngines that can be leased to worker threads as needed.

The Apache Commons Pool43 project provides a solid implementation that can be easily used to pool
Renjin ScriptEngine sessions.

3.6.3 Sharing data between ScriptEngines

One of the principal advantages of running multiple, concurrent R Sessions in the same process is that
you can share data between them.

By design, Renjin requires Vector implementations, which correspond to R objects of type “list”, “char-
acter”, “double”, “integer”, “complex”, and “raw”, to be _immutable_, which means that they cannot

41 https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
42 https://github.com/bedatadriven/renjin-examples/blob/master/appengine-servlet/src/main/java/org/renjin/example/

appengine/RenjinServlet.java#L44
43 https://commons.apache.org/proper/commons-pool/

3.6. Thread-Safety 23

https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://github.com/bedatadriven/renjin-examples/blob/master/appengine-servlet/src/main/java/org/renjin/example/appengine/RenjinServlet.java#L44
https://commons.apache.org/proper/commons-pool/


Renjin Documentation, Release 3.5-beta76

be changed after they are created. Environment and pairlist objects are _mutable_, both within the R
language and in their Java implementations, and so _cannot_ be shared between Sessions.

This means that a data.frame object, for example, can be created or loaded once, and then shared
between multiple concurrent Sessions which do their own computation on the dataset.

3.7 Customizing the Execution Context

R code must always be evaluated in the context of a Session, with tracks the global environment, which
packages have been loaded, etc.

Each new ScriptEngine instance has it’s own independent Session, and for each Session, Renjin allows
you to customize the environment in which the R scripts are evaluated with regard to:

• File System (page 24)

• Package Loading (page 25)

– AetherPackageLoader behind a proxy (page 26)

• Class Loading (page 26)

• Command-Line Arguments (page 27)

The SessionBuilder object provides an API for creating a customized Renjin ScriptEngine instance:

import javax.script.*;
import org.renjin.eval.*;
import org.renjin.script.*;

Session session = new SessionBuilder()
.withDefaultPackages()
.build();

RenjinScriptEngineFactory factory = new RenjinScriptEngineFactory();
RenjinScriptEngine engine = factory.getScriptEngine(session);

The sections below outline how the methods of the SessionBuilder object can be used to customize the
execution context.

3.7.1 File System

The R language provides many builtin functions that allow scripts to interact with the file system, such
as getwd(), setwd(), file(), list.files() etc.

In some contexts, however, direct access to the file system may not be appropriate. For example:

• You may want to limit the ability of a script to write to the file system.

• You may want to run an R script that expects data on the local file system, but redirect calls to
file() to an alternate data source, such as a network resource or a database.

For this reason, Renjin mediates all calls to R file system functions through the Apache Commons Virtual
File System (VFS)44 library.

You can provide your own FileSystemManager instance to SessionBuilder configured for your particular
use case.

The following example demonstrates how a ScriptEngine instance is configured by default:
44 https://commons.apache.org/proper/commons-vfs/

24 Chapter 3. Using Renjin as a Library

https://commons.apache.org/proper/commons-vfs/
https://commons.apache.org/proper/commons-vfs/


Renjin Documentation, Release 3.5-beta76

DefaultFileSystemManager fsm = new DefaultFileSystemManager();
fsm.addProvider("jar", new JarFileProvider());
fsm.addProvider("file", new LocalFileProvider());
fsm.addProvider("res", new ResourceFileProvider());
fsm.addExtensionMap("jar", "jar");
fsm.setDefaultProvider(new UrlFileProvider());
fsm.setBaseFile(new File("/"));
fsm.init();

Session session = new SessionBuilder()
.withDefaultPackages()
.setFileSystemManager(fsm)
.build();

RenjinScriptEngineFactory factory = new RenjinScriptEngineFactory();
RenjinScriptEngine engine = factory.getScriptEngine(session);

The renjin-appengine module provides a more complex example. There, the AppEngineContextFac-
tory45 class prepares a FileSystemManager that is configured with a AppEngineLocalFileSystem-
Provider46 subclass that provides read-only access to the servlet’s directory. This allows R scripts access
to “/WEB-INF/data/model.R”, which is translated into the absolute path at runtime.

3.7.2 Package Loading

In contrast to GNU R, which always loads packages from the local file system, Renjin’s package loading
mechanism is customizable in order to support different use cases:

• When used interactively, analysts expect to be able download and run packages interactively from
CRAN or BioConductor.

• When embedding specific R code in a web application, R packages can be declared as dependencies
in Maven, Gradle, or SBT, and shipped along with the application just as any other JVM depen-
dency.

• When allowing users to execute arbitrary R code in your application, you may want to limit R
packages to some approved subset and load from an internal repository.

For this reason, Renjin mediates all package loading, such as calls to library() or to require() through
a PackageLoader interface. This allows the application executing R code to choose an appropriate imple-
mentation.

Renjin itself provides two PackageLoader implementations:

• The ClasspathPackageLoader, which is the default for ScriptEngines and only loads packages that
are already on the classpath.

• The AetherPackageLoader, which will download packages on demand from a remote Maven repos-
itory. This is used by the Renjin interactive REPL.

If you are embedding Renjin in your application and want packages to be loaded on demand, then you
can configure SessionBuilder with an instance of an AetherPackageLoader.

The following example shows to add this dynamic behavior to a Renjin ScriptEngine, and adds an addi-
tional, internal Maven repository that is used to resolve packages:

RemoteRepository internalRepo = new RemoteRepository.Builder(
"internal", /* id */
"default", /* type */

(continues on next page)

45 https://github.com/bedatadriven/renjin/blob/87518a254c0d67788aa36e0ecb4038d25a6d9384/appengine/src/main/java/
org/renjin/appengine/AppEngineContextFactory.java#L88-L88

46 https://github.com/bedatadriven/renjin/blob/87518a254c0d67788aa36e0ecb4038d25a6d9384/appengine/src/main/java/
org/renjin/appengine/AppEngineLocalFilesSystemProvider.java

3.7. Customizing the Execution Context 25

https://github.com/bedatadriven/renjin/blob/87518a254c0d67788aa36e0ecb4038d25a6d9384/appengine/src/main/java/org/renjin/appengine/AppEngineContextFactory.java#L88-L88
https://github.com/bedatadriven/renjin/blob/87518a254c0d67788aa36e0ecb4038d25a6d9384/appengine/src/main/java/org/renjin/appengine/AppEngineContextFactory.java#L88-L88
https://github.com/bedatadriven/renjin/blob/87518a254c0d67788aa36e0ecb4038d25a6d9384/appengine/src/main/java/org/renjin/appengine/AppEngineLocalFilesSystemProvider.java
https://github.com/bedatadriven/renjin/blob/87518a254c0d67788aa36e0ecb4038d25a6d9384/appengine/src/main/java/org/renjin/appengine/AppEngineLocalFilesSystemProvider.java


Renjin Documentation, Release 3.5-beta76

(continued from previous page)

"https://repo.acme.com/content/groups/public/").build();

List<RemoteRepository> repositories = new ArrayList<>();
repositories.add(internalRepo);
repositories.add(AetherFactory.renjinRepo());
repositories.add(AetherFactory.mavenCentral());

ClassLoader parentClassLoader = getClass().getClassLoader();

AetherPackageLoader loader = new AetherPackageLoader(parentClassLoader, repositories);

Session session = new SessionBuilder()
.withDefaultPackages()
.setPackageLoader(loader)
.build();

You can also provide your own implementation of PackageLoader which resolves calls to import() and
require() in any other way that meets your needs.

AetherPackageLoader behind a proxy

If you are running Renjin behind a proxy it will be necessary for AetherPackageLoader to configure a
proxy in order to download and query the package repositories.

First, the repositories can be modified and assigned a proxy with the RemoteRepositoryBuilder:

RemoteRepository.Builder builder = new RemoteRepository.Builder(AetherFactory.renjinRepo());
builder.setProxy(new Proxy("https", HOST, PORT));
RemoteRepository renjinRepo = builder.build();

Finally, because AetherPackageLoader is querying the Renjin packages repository API, it is necessary to
change the proxy settings in the system properties.

Properties systemProperties = System.getProperties();
systemProperties.setProperty("http.proxyHost", HOST);
systemProperties.setProperty("http.proxyPort", PORT.toString());
systemProperties.setProperty("https.proxyHost", HOST);
systemProperties.setProperty("https.proxyPort", PORT.toString());

3.7.3 Class Loading

When R packages depend on JVM classes by using Renjin’s importClass() directive, the JVM class is
loaded indirectly via the Session’s PackageLoader interface.

However, R scripts can also load JVM classes on an ad-hoc basis using the import(com.acme.MyClass)
function.

Such classes are loaded not through the PackageLoader mechanism but through the Session object’s own
ClassLoader instance. This can also be set through the SessionBuilder object:

URLClassLoader classLoader = new URLClassLoader(
new URL[] {

new File("/home/alex/my_dir_with_jars").toURI().toURL(),
new File("/home/alex/my_other_dir_with_jars").toURI().toURL()

});

Session session = new SessionBuilder()
.setClassLoader(classLoader)
.build();

26 Chapter 3. Using Renjin as a Library



Renjin Documentation, Release 3.5-beta76

3.7.4 Command-Line Arguments

If you have an existing script that relies on the R commandArgs() function to obtain parameters from the
environment, you can set these via the setCommandLineArguments method:

Session session = new SessionBuilder()
.withDefaultPackages()
.build();

session.setCommandLineArguments("/usr/bin/renjin", "X", "Y", "--args", "Z");

RenjinScriptEngineFactory factory = new RenjinScriptEngineFactory();
RenjinScriptEngine engine = factory.getScriptEngine(session);

engine.eval("print(commandArgs(trailingOnly = FALSE))"); // c("/usr/bin/renjin", "X", "Y", "--args
→˓", "Z")
engine.eval("print(commandArgs(trailingOnly = TRUE))"); // c("Z")

Note that the Java Scripting API provides a richer API for moving values between Java and R. See Moving
Data between Java and R Code (page 14).

3.7. Customizing the Execution Context 27



Renjin Documentation, Release 3.5-beta76

28 Chapter 3. Using Renjin as a Library



CHAPTER 4

Using Renjin as an R Package

Though Renjin’s ultimate goal is to be a complete, drop-in replacement for GNU R, in some cases you
may want to run only part of your existing R code with Renjin, from within GNU R.

For this use case, you can load Renjin as a package and evaluate performance-sensitive sections of your
code, without having to rewrite the R code.

4.1 Prerequisites

You must have Java 8 installed or higher. For best performance, we recommend using the latest version
of Oracle or OpenJDK 8. The rJava package is also required, but should be installed automatically.

4.2 Installation

On the newer versions of GNU R (i.e. 3.4), you can install the latest version of the package from Renjin’s
secure repository:

source("http://packages.renjin.org/install.R")

Older versions of GNU R may not support secure (https) URLs on your platform, or may not support
installing directly from URLs. In this case, you can run:

download.file("http://nexus-insecure.bedatadriven.com/content/groups/public/org/renjin/
renjin-gnur-package/3.5-beta76/renjin-gnur-package-3.5-beta76.tar.gz", "renjin.tgz")
install.packages("renjin.tgz", repos = NULL, type = "source")

4.3 Usage

library(renjin)

bigsum <- function(n) {
sum <- 0
for(i in seq(from = 1, to = n)) {

(continues on next page)

29

http://nexus-insecure.bedatadriven.com/content/groups/public/org/renjin/renjin-gnur-package/
http://nexus-insecure.bedatadriven.com/content/groups/public/org/renjin/renjin-gnur-package/


Renjin Documentation, Release 3.5-beta76

(continued from previous page)

sum <- sum + i
}
sum

}
bigsumc <- compiler::cmpfun(bigsum) # GNU R's byte code compiler

system.time(bigsum(1e8))
system.time(bigsumc(1e8))
system.time(renjin(bigsum(1e8)))

30 Chapter 4. Using Renjin as an R Package



CHAPTER 5

Importing Java classes into R code

A true testament of the level of integration of Java and R in Renjin is the ability to directly access (public!)
Java classes and methods from R code. Renjin introduces the import() function which adds a Java class
to the environment from which it is called. In the section Pushing data from Java to R (page 22) in the
previous chapter we had already seen how a Java class could be put into the global environment of the
R session.

Consider the following sample R script:

import(java.util.HashMap)

# create a new instance of the HashMap class:
ageMap <- HashMap$new()

# call methods on the new instance:
ageMap$put("Bob", 33)
ageMap$put("Carol", 41)

print(ageMap$size())

age <- ageMap$get("Carol")
cat("Carol is ", age, " years old.\n", sep = "")

# Java primitives and their boxed types
# are automatically converted to R vectors:
typeof(age)

As we showed in the Introduction (page 1), we can execute this script using the java.io.FileReader47

interface:

engine.eval(new java.io.FileReader("import_example.R"));

Output:

[1] 2
Carol is 41 years old.

The first line in the output is the output from the print(ageMap$size()) statement.

47 https://docs.oracle.com/javase/7/docs/api/java/io/FileReader.html

31

https://docs.oracle.com/javase/7/docs/api/java/io/FileReader.html


Renjin Documentation, Release 3.5-beta76

5.1 Bean classes

For Java classes with accessor methods that conform to the getXX() and setXX() Java bean convention,
Renjin provides some special sauce to make access from R more natural.

Take the following Java bean as an example:

package beans;

public class Customer {
private String name;
private int age;

public String getName() { return name; }
public void setName(String name) { this.name = name; }

public int getAge() { return age; }
public void setAge(int age) { this.age = age; }

}

You can construct a new instance of the Customer class and provide initial values with named arguments
to the constructor. For example:

import(beans.Customer)

bob <- Customer$new(name = "Bob", age = 36)
carol <- Customer$new(name = "Carol", age = 41)
cat("'bob' is an ", typeof(bob), ", bob$name = ", bob$name, "\n", sep = "")
# the original java methods are also available i.e. the following is equivalent
cat("'bob' is an ", typeof(bob), ", bob$getName() = ", bob$getName(), "\n", sep = "")

If the previous R code is stored in a file bean_example.R then the following Java code snippet runs this
example:

// required import(s):
import beans.Customer;

engine.eval(new java.io.FileReader("bean_example.R"));

Output:

'bob' is an externalptr, bob$name = Bob
'bob' is an externalptr, bob$getName() = Bob

32 Chapter 5. Importing Java classes into R code



CHAPTER 6

Writing Renjin Extensions

This chapter can be considered as Renjin’s equivalent of the Writing R Extensions48 manual for GNU R.
Here we discuss how you create extensions, or packages as they are referred to in R, for Renjin. Packages
allow you to group logically related functions and data together in a single archive which can be reused
and shared with others.

Renjin packages do not differ much from packages for GNU R. One notable difference is that Renjin treats
unit tests as first class citizens, i.e. Renjin includes a package called hamcrest that provides functionality
for writing unit tests right out of the box. We encourage you to include as many unit tests with your
package as possible.

One feature currently missing for Renjin packages is the ability to document your R code. You can use
Javadoc to document your Java classes and methods.

6.1 Package directory layout

The files in a Renjin package should be organized in a directory structure that adheres to the Maven
standard directory layout49. A directory layout that will cover most Renjin packages is as follows:

projectdir/
src/

main/
java/

...
R/
resources/

test/
java/

...
R/
resources/

NAMESPACE
pom.xml

The table Directories in a Renjin package (page 34) gives a short description of the directories and files in
this layout.

48 http://cran.r-project.org/doc/manuals/r-release/R-exts.html
49 http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

33

http://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html


Renjin Documentation, Release 3.5-beta76

Table 1: Directories in a Renjin package
Directory Description
src/main/java Java source code (*.java files)
src/main/R R source code (*.R files)
src/main/resources Files and directories to be copied to the root of the generated JAR file
src/test/java Unit tests written in Java using JUnit
src/test/R Unit tests written in R using Renjin’s Hamcrest package
src/test/resource Files available to the unit tests (not copied into the generated JAR file)
NAMESPACE Almost equivalent to R’s NAMESPACE file
pom.xml Maven’s Project Object Model file

The functionality of the DESCRIPTION file used by GNU R packages is replaced by a Maven pom.xml
(POM) file. In this file you define the name of your package and any dependencies, if applicable. The
POM file is used by Renjin’s Maven plugin to create the package. This is the subject of the next section.

6.2 Renjin Maven plugin

Whereas you would use the commands R CMD check, R CMD build, and R CMD INSTALL to check, build
(i.e. package), and install packages for GNU R, packages for Renjin are tested, packaged, and installed
using a Maven plugin. The following XML file can be used as a pom.xml template for all Renjin packages:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.acme</groupId>
<artifactId>foobar</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

<!-- general information about your package -->
<name>Package name or title</name>
<description>A short description of your package.</description>
<url>http://www.url.to/your/package/website</url>
<licenses>
<!-- add one or more licenses under which the package is released -->
<license>
<name>Apache License version 2.0</name>
<url>http://www.apache.org/licenses/LICENSE-2.0.html</url>

</license>
</licenses>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<renjin.version>3.5-beta76</renjin.version>

</properties>

<dependencies>
<!-- the script engine is convenient even if you do not use it explicitly -->
<dependency>
<groupId>org.renjin</groupId>
<artifactId>renjin-script-engine</artifactId>
<version>${renjin.version}</version>

34 Chapter 6. Writing Renjin Extensions

http://maven.apache.org/POM/4.0.0


Renjin Documentation, Release 3.5-beta76

</dependency>
<!-- the hamcrest package is only required if you use it for unit tests -->
<dependency>
<groupId>org.renjin</groupId>
<artifactId>hamcrest</artifactId>
<version>${renjin.version}</version>
<scope>test</scope>

</dependency>
</dependencies>

<repositories>
<repository>
<id>bedatadriven</id>
<name>bedatadriven public repo</name>
<url>https://nexus.bedatadriven.com/content/groups/public/</url>

</repository>
</repositories>

<pluginRepositories>
<pluginRepository>
<id>bedatadriven</id>
<name>bedatadriven public repo</name>
<url>https://nexus.bedatadriven.com/content/groups/public/</url>

</pluginRepository>
</pluginRepositories>

<build>
<plugins>
<plugin>
<groupId>org.renjin</groupId>
<artifactId>renjin-maven-plugin</artifactId>
<version>${renjin.version}</version>
<executions>
<execution>
<id>build</id>
<goals>
<goal>namespace-compile</goal>

</goals>
<phase>process-classes</phase>

</execution>
<execution>
<id>test</id>
<goals>
<goal>test</goal>

</goals>
<phase>test</phase>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

This POM file provides a lot of information:

• fully qualified name of the package, namely com.acme.foobar;

• package version, namely 1.0-SNAPSHOT;

• package dependencies and their versions, namely the Renjin Script Engine and the hamcrest pack-

6.2. Renjin Maven plugin 35



Renjin Documentation, Release 3.5-beta76

age (see the next section);

• BeDataDriven’s public repository to look for the dependencies if it can’t find them locally or in
Maven Central;

Important: Package names is one area where Renjin takes a different approach to GNU R and adheres
to the Java standard of using fully qualified names. The package in the example above must be loaded
using its fully qualified name, that is with library(com.acme.foobar) or require(com.acme.foobar).
The group ID (com.acme in this example) is traditionally a domain over which only you have control.
The artifact ID should have only lower case letters and no strange symbols50. The term artifact is used
by Maven to refer to the result of a build which, in the context of this chapter, is always a package.

Now you can use Maven to test, package, and install your package using the following commands:

mvn test run the package tests (both the Java and R code tests)

mvn package create a JAR file of the package (named foobar-1.0-SNAPSHOT.jar in the example above)
in the target folder of the package’s root directory

mvn install install the artifact (i.e. package) into the local repository

mvn deploy upload the artifact to a remote repository (requires additional configuration)

mvn clean clean the project’s working directory after a build (can also be combined with one of the
previous commands, for example: mvn clean install)

6.3 Package NAMESPACE file

Since R version 2.14, packages are required to have a NAMESPACE file and the same holds for Renjin.
Because of dynamic searching for objects in R, the use of a NAMESPACE file is good practice anyway.
The NAMESPACE file is used to explicitly define which functions should be imported into the package’s
namespace and which functions the package exposes (i.e. exports) to other packages. Using this file, the
package developer controls how his or her package finds functions.

Usage of the NAMESPACE in Renjin is almost exactly the same as in GNU R with one addition: Renjin
accepts the directive importClass() for importing Java classes into the package namespace.

Here is an overview of the namespace directives that Renjin supports:

export(f) or export(f, g) Export an object f (singular form) or multiple objects f and g (plural form).
You can add as many objects to this directive as you like.

exportPattern("^[^\\.]") Export all objects whose name does not start with a period (‘.’). Although
any regular expression can be used in this directive, this is by far the most common one. It is
considered to be good practice not to use this directive and to explicitly export objects using the
export() directive.

import(foo) or import(foo, bar) Import all exported objects from the package named foo (and bar
in the plural form). Like the export() directive, you can add as many objects as you like to this
directive.

importFrom(foo, f) or importFrom(foo, f, g) Import only object f (and g in the plural form) from
the package named foo.

S3method(print, foo) Register a print (S3) method for the foo class. This ensures that other packages
understand that you provide a function print.foo() that is a print method for class foo. The
print.foo() does not need to be exported.

importClassesFrom(package, classA) import S4 classes

importMethodsFrom(package, methodA) import S4 methods

50 http://maven.apache.org/guides/mini/guide-naming-conventions.html

36 Chapter 6. Writing Renjin Extensions

http://maven.apache.org/guides/mini/guide-naming-conventions.html


Renjin Documentation, Release 3.5-beta76

exportClasses(fooClass) export S4 classes (and Reference Classes51). You can add as many classes
you like to this directive

exportMethods(barMethod) export S4 methods. You can add as many methods you like to this directive

importClass(com.acme.myclass) A namespace directive which is unique to Renjin and which allows
Java classes to be imported into the package namespace. This directive is actually a function which
does the same as Renjin’s import() function that was introduced in the chapter Importing Java
classes into R code (page 31).

To summarize: the R functions in your package have access to all R functions defined within your package
(also those that are not explicitly exported since Java has its own mechanism to control the visibility of
classes) as well as the Java classes imported into the package names using the importClass directive.
Other packages only have access to the R objects that your package exports as well as to the public Java
classes.

If you are creating a package that uses java code and you want to expose an R api for handling package
consumers you need to put the import statement in the R function that access the java code. Using the
example of the Customer java class from the Importing Java classes into R code (page 31) chapter: Lets
say you want to expose a createCustomer function so that package consumers does not have to interact
directly with your java classes. E.g. instead of doing Customer$new() we create the following factory
function

createCustomer <- function(name, age) {
import(beans.Customer)
Customer$new(name = name, age = age)

}

Note that we need to put the import(beans.Customer) directive inside the function for this to work. We
also need to add export(createCustomer) to the NAMESPACE file which will enable package consumers to
do:

library('com.acme:customerbean')
bobby <- createCustomer(name = "Bobby", age = 26)

6.4 Using the hamcrest package to write unit tests

Renjin includes a built-in package called hamcrest for writing unit tests using the R language. The
package and its test functions are inspired by the Hamcrest framework. From hamcrest.org52: Hamcrest
is a framework for writing matcher objects allowing ‘match’ rules to be defined declaratively. The Wikipedia
article on Hamcrest53 gives a good and short explanation of the rationale behind the framework.

If you are familiar with the ‘expectation’ functions used in the testthat54 package for GNU R, then you
will find many similarities with the assertion and matcher functions in Renjin’s hamcrest package.

A test is a single R function with no arguments and a name that starts with test.. Each test function
can contain one or more assertions and the test fails if at least one of the assertions throws an error. For
example, using the package defined in the previous section:

library(hamcrest)
library(com.acme.foobar)

test.df <- function() {
df <- data.frame(x = seq(10), y = runif(10))

assertThat(df, instanceOf("data.frame"))

(continues on next page)

51 https://www.rdocumentation.org/packages/methods/versions/3.5.3/topics/ReferenceClasses
52 https://code.google.com/p/hamcrest/wiki/Tutorial
53 http://en.wikipedia.org/wiki/Hamcrest
54 http://cran.r-project.org/web/packages/testthat/index.html

6.4. Using the hamcrest package to write unit tests 37

https://www.rdocumentation.org/packages/methods/versions/3.5.3/topics/ReferenceClasses
https://code.google.com/p/hamcrest/wiki/Tutorial
http://en.wikipedia.org/wiki/Hamcrest
http://en.wikipedia.org/wiki/Hamcrest
http://cran.r-project.org/web/packages/testthat/index.html


Renjin Documentation, Release 3.5-beta76

(continued from previous page)

assertThat(dim(df), equalTo(c(10,2)))
}

Test functions are stored in R script files (i.e. files with extension .R or .S) in the src/test/R folder
of your package. Each file should start with the statement library(hamcrest) in order to attach the
hamcrest package to the search path as well as a library() statement to load your own package. You
can put test functions in different files to group them according to your liking.

The central function is the assertThat(actual, expected) function which takes two arguments: actual
is the object about which you want to make an assertion and expected is the matcher function that
defines the rule of the assertion. In the example above, we make two assertions about the data frame df,
namely that it should have class data.frame and that its dimension is equal to the vector c(10, 2) (i.e.
ten rows and two columns). The following sections describe the available matcher functions in more
detail.

6.4.1 Testing for (near) equality

Use equalTo() to test if actual is equal to expected:

assertThat(actual, equalTo(expected))

Two objects are considered to be equal if they have the same length and if actual == expected is TRUE.

Use identicalTo() to test if actual is identical to expected:

assertThat(actual, identicalTo(expected))

Two objects are considered to be identical if identical(actual, expected) is TRUE. This test is much
stricter than equalTo() as it also checks that the type of the objects and their attributes are the same.

Use closeTo() to test for near equality (i.e. with some margin of error as defined by the delta argument):

assertThat(actual, closeTo(expected, delta))

This assertion only accepts numeric vectors as arguments and delta must have length 1. The assertion
also throws an error if actual and expected do not have the same length. If their lengths are greater
than 1, the largest (absolute) difference between their elements may not exceed delta.

6.4.2 Testing for TRUE or FALSE

Use isTrue() and isFalse() to check that an object is identical to TRUE or FALSE respectively:

assertThat(actual, isTrue())
assertTrue(actual) # same, but shorter
assertThat(actual, identicalTo(TRUE)) # same, but longer

6.4.3 Testing for class inheritance

Use instanceOf() to check if an object inherits from a class:

assertThat(actual, instanceOf(expected))

An object is assumed to inherit from a class if inherits(actual, expected) is TRUE.

Tip: Renjin’s hamcrest package also exists as a GNU R package with the same name available at https:
//github.com/bedatadriven/hamcrest. If you are writing a package for both Renjin and GNU R, you can

38 Chapter 6. Writing Renjin Extensions

https://github.com/bedatadriven/hamcrest
https://github.com/bedatadriven/hamcrest


Renjin Documentation, Release 3.5-beta76

use the hamcrest package to check the compatibility of your code by running the test files in both Renjin
and GNU R.

6.4.4 Understanding test results

When you run mvn test within the directory that holds the POM file (i.e. the root directory of your
package), Maven will execute both the Java and R unit tests and output various bits of information
including the test results. The results for the Java tests are summarized in a section marked with:

-------------------------------------------------------
T E S T S
-------------------------------------------------------

and which will summarize the test results like:

Results :

Tests run: 5, Failures: 1, Errors: 0, Skipped: 0

The results of the R tests are summarized in a section marked with:

-------------------------------------------------------
R E N J I N T E S T S
-------------------------------------------------------

The R tests are summarized per R source file which will look similar to the following example:

Running tests in /home/foobar/mypkg/src/test/R
Running function_test.R
No default packages specified
Tests run: 3, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.898

Note that the number of tests run is equal to the number of test.* functions in the R source file + 1 as
running the test file is also counted as a test.

6.4. Using the hamcrest package to write unit tests 39



Renjin Documentation, Release 3.5-beta76

40 Chapter 6. Writing Renjin Extensions



CHAPTER 7

Example extension projects

Below is a short list of fully functioning Renjin packages:

renjin-maven-package-example55 A simple example showing a renjin extension (package) with java in-
tegration.

renjinSamplesAndTests56 Various simple examples of Renjin extensions.

xmlr57 A XML DOM package developed with Reference Classes using the GNU R directory layout.

55 https://github.com/bedatadriven/renjin-maven-package-example
56 https://github.com/perNyfelt/renjinSamplesAndTests
57 https://github.com/Alipsa/xmlr

41

https://github.com/bedatadriven/renjin-maven-package-example
https://github.com/perNyfelt/renjinSamplesAndTests
https://github.com/Alipsa/xmlr


Renjin Documentation, Release 3.5-beta76

42 Chapter 7. Example extension projects



CHAPTER 8

Renjin Java API specification

This chapter includes a selection of public classes and methods in some of Renjin’s Java packages which
are most useful to users of Renjin looking to exchange data between Java and R code. The java docs for
renjin is available as http://javadoc.renjin.org/.

8.1 org.renjin.sexp

The org.renjin.sexp package contains Renjin’s classes that represent the different object types in R.

8.1.1 AttributeMap

class AttributeMap
Renjin’s implementation to store object attributes. See the Attributes (page 14) section for a short
introduction to attributes on objects in R.

SEXP (page 45) getClassVector()
See hasClass (page 43) for an example.

Returns a character vector of classes or null if no class attribute is defined

Vector (page 46) getDim()

Returns the dim attribute as a Vector (page 46) or null if no dimension is defined

AtomicVector getNamesOrNull()

Returns the names attribute as a AtomicVector or null if no names are defined

boolean hasClass()

Returns true if the class attribute exists, false otherwise

Example:

Vector df = (Vector)engine.eval("df <- data.frame(x = seq(5), y = runif(5))");
AttributeMap attributes = df.getAttributes();
if (attributes.hasClass()) {

System.out.println("Classes defined on 'df': " +
(Vector)attributes.getClassVector());

}

43

http://javadoc.renjin.org/


Renjin Documentation, Release 3.5-beta76

Output:

Classes defined on 'df': "data.frame"

ListVector (page 44) toVector()
Convert the object’s attributes to a list.

Returns attributes as a ListVector (page 44)

8.1.2 ListVector

class ListVector extends AbstractVector
Renjin’s class that represent R lists and data frames. Data frames are lists with the restriction that
all elements, which are atomic vectors, have the same length.

SEXP (page 45) getElementAsSEXP(int index)

Parameters

• index – zero-based index

Returns a SEXP that can be cast to a vector type

Vector (page 46) getElementAsVector(String58 name)
Convenience method to get the named element of a list. See the section Dealing with lists and
data frames (page 21) for an example.

Parameters

• name – element name as string

Returns a Vector (page 46)

int indexOfName(String59 name)

Parameters

• name – element name as string

Returns zero-based index of name in the names attribute, -1 if name is not present in
the names attribute or if the names attribute is not set

boolean isElementNA(int index)
Check if an element of a list is NA.

Parameters

• index – zero-based index

Returns true if the element at position index is an NA, false otherwise

8.1.3 Logical

enum Logical
A logical value in R can be TRUE, FALSE, or the logical NA.

static Logical (page 44) valueOf(boolean b)
Turn a Java boolean into an R logical value.

Parameters

• b – true or false

Returns R’s TRUE or FALSE as Renjin’s representation of a logical value

static Logical (page 44) valueOf(int i)
Turn an integer into an R logical value.

44 Chapter 8. Renjin Java API specification

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html


Renjin Documentation, Release 3.5-beta76

Parameters

• i – an integer value

Returns TRUE if i is 1, FALSE if i is 0, or (logical) NA otherwise

8.1.4 SEXP

interface SEXP
Renjin’s superclass for all objects that are mapped from R’s object types.

AttributeMap (page 43) getAttributes()
Get the attributes of an object as a AttributeMap which is Renjin’s way of working with object
attributes. R stores attributes as pairlists which are essentially the same as generic lists, there-
fore these attributes can safely be stored in a list. Renjin provides a toVector() (page 44)
method to do just that.

Returns the attributes for the object as a, possibly empty, AttributeMap (page 43)

Example:

ListVector res = (ListVector)engine.eval(
"list(name = \"Jane\", age = 23, scores = c(6, 7, 8, 9))");

// use ListVector.toString() method to display the list:
System.out.println(res);
if (res.hasAttributes()) {

AttributeMap attributes = res.getAttributes();
// convert the attribute map to something more convenient:
ListVector attributeList = attributes.toVector();
System.out.println("The list has "

+ attributeList.length() + " attribute(s)");
}

Output:

list(name = "Jane", age = 23.0, scores = c(6, 7, 8, 9))
The list has 1 attribute(s)

String60 getTypeName()
Get the type of the object as it is known in R, i.e. the result of R’s typeof() function.

Returns the object type as a string

Example:

Vector x = (Vector)engine.eval("NA");
System.out.println("typeof(NA) = " + x.getTypeName());

Output:

typeof(NA) = logical

boolean hasAttributes()
Check for the presence of attributes. See getAttributes (page 45) for an example.

Returns true if the object has at least one attribute, false otherwise

int length()
Get the length of the object. All objects in R have a length and this method gives the same
result as R’s length() function. Functions always have length 1 and the NULL object always
has length 0. The length of an environment is equal to the number of objects inside the
environment.

Returns length of the vector as an integer

8.1. org.renjin.sexp 45

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html


Renjin Documentation, Release 3.5-beta76

8.1.5 Vector

interface Vector extends SEXP (page 45)

An interface which represents all vector object types in R: atomic vectors and generic
vectors (i.e. Lists (page 15)).

double getElementAsDouble(int index)

Parameters

• index – zero-based index

Returns the element at index as a double, converting if necessary; NaN if no conver-
sion is possible

Example:

// create a string vector in R:
Vector x = (Vector)engine.eval("c(\"foo\", \"bar\")");
double x1 = x.getElementAsDouble(0);
if (Double.isNaN(x1)) {

System.out.println("Result is NaN");
}
String s = x.getElementAsString(0);
System.out.println("First element of result is " + s);
// call the toString() method of the underlying StringArrayVector:
System.out.println("Vector as defined in R: " + x);

Output:

Result is NaN
First element of result is foo
Vector as defined in R: c(foo, bar)

Note: All of the classes that implement the Vector (page 46) interface have a toString()
method that will display (a short form of) the content of the vector. This method is provided
for debugging purposes only.

int getElementAsInt(int index)

Parameters

• index – zero-based index

Returns the element at index as an integer, converting if necessary; NaN if no con-
version is possible

String61 getElementAsString(int index)

Parameters

• index – zero-based index

Returns the element at index as a string

Logical (page 44) getElementAsLogical(int index)

Parameters

• index – zero-based index

Returns the element at index as Renjin’s representation of a boolean value

46 Chapter 8. Renjin Java API specification

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html


Renjin Documentation, Release 3.5-beta76

8.2 org.renjin.primitives.matrix

8.2.1 Matrix

class Matrix
Wrapper class for a Vector (page 46) with two dimensions. Simplifies interaction with R matrices
from Java code.

Matrix(Vector (page 46) vector)
Constructor for creating a matrix from a Vector (page 46). Checks if the dimension attribute
is present and has length 2, throws an IllegalArgumentException62 if not. See the section
Dealing with matrices (page 20) for an example.

Parameters

• vector – a vector with two dimensions

Throws

• IllegalArgumentException – if the dim attribute of vector does not have
length 2

int getNumRows()

Returns number of rows in the matrix

int getNumCols()

Returns number of columns in the matrix

8.3 Exceptions

class ParseException extends RuntimeException63

An exception thrown by Renjin’s parser when there is an error in parsing R code, usually due to a
syntax error. See Handling errors generated by the R code (page 21) for an example that catches this
exception.

class EvalException extends RuntimeException64

An exception thrown by Renjin’s interpreter when the R code generates an error condition, e.g. by
the stop() function. See Handling errors generated by the R code (page 21) for an example that
catches this exception.

SEXP (page 45) getCondition()

Returns a SEXP (page 45) that is a list with a single named element message. Use
getElementAsString() (page 46) to obtain the actual error message.

62 https://docs.oracle.com/javase/7/docs/api/java/lang/IllegalArgumentException.html

8.2. org.renjin.primitives.matrix 47

https://docs.oracle.com/javase/7/docs/api/java/lang/IllegalArgumentException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html
https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html


Renjin Documentation, Release 3.5-beta76

48 Chapter 8. Renjin Java API specification



Index

A
as.factor()

R function, 15
atomic vectors, 14
attr()

R function, 14
AttributeMap (Java class), 43
attributes()

R function, 14

D
data.frame()

R function, 16
dim()

R function, 16

E
EvalException (Java class), 47
exceptions, 21, 47

F
factors, 15

G
generic vectors, 15
getAttributes() (Java method), 45
getClassVector() (Java method), 43
getCondition() (Java method), 47
getDim() (Java method), 43
getElementAsDouble(int) (Java method), 46
getElementAsInt(int) (Java method), 46
getElementAsLogical(int) (Java method), 46
getElementAsSEXP(int) (Java method), 44
getElementAsString(int) (Java method), 46
getElementAsVector(String) (Java method), 44
getNamesOrNull() (Java method), 43
getNumCols() (Java method), 47
getNumRows() (Java method), 47
getTypeName() (Java method), 45

H
hasAttributes() (Java method), 45
hasClass() (Java method), 43

I
import()

Renjin function, 31
indexOfName(String) (Java method), 44
install.packages()

R function, 6
is.list()

R function, 16
isElementNA(int) (Java method), 44

J
Java

length(), 45

L
length()

Java, 45
R function, 45

length() (Java method), 45
library()

R function, 6
ListVector (Java class), 44
Logical (Java enum), 44

M
Matrix (Java class), 47
matrix()

R function, 20
Matrix(Vector) (Java constructor), 47

N
NA, 14
NULL, 14

O
org.renjin.eval (package), 47
org.renjin.parser (package), 47
org.renjin.primitives.matrix (package), 47
org.renjin.sexp (package), 43

P
ParseException (Java class), 47
print()

49



Renjin Documentation, Release 3.5-beta76

R function, 11

R
R function

as.factor(), 15
attr(), 14
attributes(), 14
data.frame(), 16
dim(), 16
install.packages(), 6
is.list(), 16
length(), 45
library(), 6
matrix(), 20
print(), 11
stop(), 21
typeof(), 17

Renjin function
import(), 31

REPL, 5, 29

S
SEXP (Java interface), 45
stop()

R function, 21

T
toVector() (Java method), 44
typeof()

R function, 17

V
valueOf(boolean) (Java method), 44
valueOf(int) (Java method), 44
Vector (Java interface), 46
version, 2

50 Index


	Introduction
	About Renjin
	Understanding Renjin and package versions

	Using Renjin Interactively
	Prerequisites
	Installation
	Using Packages

	Using Renjin as a Library
	Project Setup
	Using Packages
	Evaluating R Language Code
	Capturing results from Renjin
	Moving Data between Java and R Code
	Thread-Safety
	Customizing the Execution Context

	Using Renjin as an R Package
	Prerequisites
	Installation
	Usage

	Importing Java classes into R code
	Bean classes

	Writing Renjin Extensions
	Package directory layout
	Renjin Maven plugin
	Package NAMESPACE file
	Using the hamcrest package to write unit tests

	Example extension projects
	Renjin Java API specification
	org.renjin.sexp
	org.renjin.primitives.matrix
	Exceptions

	Index

